A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries
نویسندگان
چکیده
We report a facile method to prepare a nanoarchitectured lithium manganate/graphene (LMO/G) hybrid as a positive electrode for Li-ion batteries. The Mn(2)O(3)/graphene hybrid is synthesized by exfoliation of graphene sheets and deposition of Mn(2)O(3) in a one-step electrochemical process, which is followed by lithiation in a molten salt reaction. There are several advantages of using the LMO/G as cathodes in Li-ion batteries: (1) the LMO/G electrode shows high specific capacities at high gravimetric current densities with excellent cycling stability, e.g., 84 mAh·g(-1) during the 500th cycle at a discharge current density of 5625 mA·g(-1) (~38.01 C capacity rating) in the voltage window of 3-4.5 V; (2) the LMO/G hybrid can buffer the Jahn-Teller effect, which depicts excellent Li storage properties at high current densities within a wider voltage window of 2-4.5 V, e.g., 93 mAh·g(-1) during the 300th cycle at a discharge current density of 5625 mA·g(-1) (~38.01 C). The wider operation voltage window can lead to increased theoretical capacity, e.g., 148 mAh·g(-1) between 3 and 4.5 V and 296 mAh·g(-1) between 2 and 4.5 V; (3) more importantly, it is found that the attachment of LMO onto graphene can help to reduce the dissolution of Mn(2+) into the electrolyte, as indicated by the inductively coupled plasma (ICP) measurements, and which is mainly attributed to the large specific surface area of the graphene sheets.
منابع مشابه
Free-standing Na(2/3)Fe(1/2)Mn(1/2)O(2)@graphene film for a sodium-ion battery cathode.
The development of high-performance cathodes for sodium-ion batteries remains a great challenge, while low-cost, high-capacity Na2/3Fe1/2Mn1/2O2 is an attractive electrode material candidate comprised of earth-abundant elements. In this work, we designed and fabricated a free-standing, binder-free Na2/3Fe1/2Mn1/2O2@graphene composite via a filtration process. The porous composite led to excelle...
متن کاملSnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملIntegrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries
Nanoarchitectured electroactive materials can boost rates of Li insertion/extraction, showing genuine potential to increase power output of Li-ion batteries. However, electrodes assembled with low-dimensional nanostructured transition metal oxides by conventional approach suffer from dramatic reductions in energy capacities owing to sluggish ion and electron transport kinetics. Here we report t...
متن کاملHigh-performance spinel-rich Li1.5MnTiO4+δ ultralong nanofibers as cathode materials for Li-ion batteries
Recently, composite materials based on Li-Mn-Ti-O system were developed to target low cost and environmentally benign cathodes for Li-ion batteries. The spinel-layered Li1.5MnTiO4+δ bulk particles showed excellent cycle stability but poor rate performance. To address this drawback, ultralong nanofibers of a Li1.5MnTiO4+δ spinel-layered heterostructure were synthesized by electrospinning. Unifor...
متن کاملMn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
We developed two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn(3)O(4) nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn(3)O(4) nanoparticles to be wired up to a current collector through the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012